Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.625
Filtrar
1.
MAbs ; 16(1): 2303781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38475982

RESUMO

Early identification of antibody candidates with drug-like properties is essential for simplifying the development of safe and effective antibody therapeutics. For subcutaneous administration, it is important to identify candidates with low self-association to enable their formulation at high concentration while maintaining low viscosity, opalescence, and aggregation. Here, we report an interpretable machine learning model for predicting antibody (IgG1) variants with low viscosity using only the sequences of their variable (Fv) regions. Our model was trained on antibody viscosity data (>100 mg/mL mAb concentration) obtained at a common formulation pH (pH 5.2), and it identifies three key Fv features of antibodies linked to viscosity, namely their isoelectric points, hydrophobic patch sizes, and numbers of negatively charged patches. Of the three features, most predicted antibodies at risk for high viscosity, including antibodies with diverse antibody germlines in our study (79 mAbs) as well as clinical-stage IgG1s (94 mAbs), are those with low Fv isoelectric points (Fv pIs < 6.3). Our model identifies viscous antibodies with relatively high accuracy not only in our training and test sets, but also for previously reported data. Importantly, we show that the interpretable nature of the model enables the design of mutations that significantly reduce antibody viscosity, which we confirmed experimentally. We expect that this approach can be readily integrated into the drug development process to reduce the need for experimental viscosity screening and improve the identification of antibody candidates with drug-like properties.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Anticorpos Monoclonais/química , Viscosidade , Imunoglobulina G/química , Mutação , Ponto Isoelétrico
2.
J Colloid Interface Sci ; 665: 801-813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555748

RESUMO

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.


Assuntos
Insulina , Protoporfirinas , Polieletrólitos , Óxido de Etileno , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Proteínas , Ponto Isoelétrico
3.
MAbs ; 16(1): 2318817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444390

RESUMO

Bispecific antibodies (BsAbs) capable of recognizing two distinct epitopes or antigens offer promising therapeutic options for various diseases by targeting multiple pathways. The favorable pharmacokinetic (PK) properties of monoclonal antibodies (mAbs) are crucial, as they directly influence patient safety and therapeutic efficacy. For numerous mAb therapeutics, optimization of neonatal Fc receptor (FcRn) interactions and elimination of unfavorable molecular properties have led to improved PK properties. However, many BsAbs exhibit unfavorable PK, which has precluded their development as drugs. In this report, we present studies on the molecular determinants underlying the distinct PK profiles of three IgG1-scFv BsAbs. Our study indicated that high levels of nonspecific interactions, elevated isoelectric point (pI), and increased number of positively charged patches contributed to the fast clearance of IgG1-scFv. FcRn chromatography results revealed specific scFv-FcRn interactions that are unique to the IgG1-scFv, which was further supported by molecular dynamics (MD) simulation. These interactions likely stabilize the BsAb FcRn interaction at physiological pH, which in turn could disrupt FcRn-mediated BsAb recycling. In addition to the empirical observations, we also evaluated the impact of in silico properties, including pI differential between the Fab and scFv and the ratio of dipole moment to hydrophobic moment (RM) and their correlation with the observed clearance. These findings highlight that the PK properties of BsAbs may be governed by novel determinants, owing to their increased structural complexity compared to immunoglobulin G (IgG) 1 antibodies.


Assuntos
Anticorpos Biespecíficos , Recém-Nascido , Humanos , Anticorpos Monoclonais , Epitopos , Imunoglobulina G , Ponto Isoelétrico
4.
MAbs ; 16(1): 2313737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332713

RESUMO

Therapeutic mAbs show a specific "charge fingerprint" that may affect safety and efficacy, and, as such, it is often identified as a critical quality attribute (CQA). Capillary iso-electric focusing (cIEF), commonly used for the evaluation of such CQA, provides an analytical tool to investigate mAb purity and identity across the product lifecycle. Here, we discuss the results of an analysis of a panel of antibody products by conventional and whole-column imaging cIEF systems performed as part of European Pharmacopoeia activities related to development of "horizontal standards" for the quality control of monoclonal antibodies (mAbs). The study aimed at designing and verifying an independent and transversal cIEF procedure for the reliable analysis of mAbs charge variants. Despite the use of comparable experimental conditions, discrepancies in the charge profile and measured isoelectric points emerged between the two cIEF systems. These data suggest that the results are method-dependent rather than absolute, an aspect known to experts in the field and pharmaceutical industry, but not suitably documented in the literature. Critical implications from analytical and regulatory perspectives, are herein thoughtfully discussed, with a special focus on the context of market surveillance and identification of falsified medicines.


Assuntos
Anticorpos Monoclonais , Eletroforese Capilar , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/análise , Focalização Isoelétrica/métodos , Eletroforese Capilar/métodos , Ponto Isoelétrico , Controle de Qualidade
5.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38361426

RESUMO

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Dobramento de Proteína , RNA/metabolismo , Solubilidade , Proteômica , Ponto Isoelétrico , Agregados Proteicos , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Espectrometria de Massas
6.
J Med Chem ; 67(2): 1406-1420, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214909

RESUMO

Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CLtot) of the biologically active lead compound was very high. Because our studies revealed that hepatic uptake by organic anion transporting polypeptide (OATP) was responsible for the high CLtot, we found a novel approach to reducing their uptake based on isoelectric point (IP) values as an indicator for substrate recognition by OATP1B1/1B3. Our "IP shift strategy" to adjust the IP values culminated in the discovery of TP0628103 (18), which is characterized by reduced in vitro OATP-mediated hepatic uptake and in vivo CLtot. Our in vitro-in vivo extrapolation of OATP-mediated clearance and the "IP shift strategy" provide crucial insights for a new medicinal chemistry approach to reducing the systemic clearance of OATP1B1/1B3 substrates.


Assuntos
Metaloproteinase 7 da Matriz , Transportadores de Ânions Orgânicos , Transportador 1 de Ânion Orgânico Específico do Fígado , Ponto Isoelétrico , Fígado , Interações Medicamentosas , Hepatócitos
7.
J Phys Chem B ; 128(1): 371-380, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156604

RESUMO

This study explores the impact of network functionalization and chemical composition on the pH-responsive behavior of polymer nanogels and their adsorption of proteins. Using a thermodynamic theory informed by a molecular model, this work evaluates the interactions of three proteins with varying isoelectric points (insulin, myoglobin, and cytochrome c) and pH-responsive nanogels based on methacrylic acid or allylamine motifs. Three different functionalization strategies are considered, with pH-responsive segments distributed randomly, at the center, or on the surface of the polymer network. Our results show that the spatial distribution of functional units affects both the nanogels' mechanical response to pH changes and the level and localization of adsorbed proteins. The dependence of protein adsorption on the salt concentration is also investigated, with the conclusion that it is best to encapsulate proteins at low salt concentrations and aim for release at high salt concentrations. These results provide valuable information for the design of pH-responsive nanogels as vehicles for protein encapsulation, transport, and administration.


Assuntos
Polímeros , Polímeros/química , Nanogéis , Adsorção , Concentração de Íons de Hidrogênio , Ponto Isoelétrico
8.
Soft Matter ; 19(46): 9027-9035, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971365

RESUMO

Collagen/hyaluronan hydrogels with physical properties well suited for biomedical applications are challenging to synthesize due to the formation of polyionic complexes (PICs). A systematic physicochemical study was thus performed to determine novel conditions to inhibit the formation of collagen/hyaluronan PICs and obtain composite hydrogels with high physical properties. Using a range of pH from 1 to 5.5 and the addition of NaCl, type I collagen and tyramine-substituted hyaluronic acid (THA) solutions were mixed and analyzed by cryo-scanning electron microscopy and ATR-FTIR. PIC formation was inhibited at pH 1 without salt and at pH 2.5 and 5.5 in the presence of 400 mM NaCl. Interestingly, collagen fibrils were observed in solution at pH 5.5 before mixing with THA. After collagen gelling by pH increase, a homogeneous hydrogel consisting of collagen fibrils was only observed when PICs were inhibited. Then, the THA gelling performed by photo-crosslinking increased the rheological properties by four when hydrogels were formed with collagen/THA mixtures at pH 1 or 5.5 with salt. Taken together, these results show that a pH of 5.5, close to the collagen isoelectric point, enables the formation of collagen fibrils in solution, inhibits the PICs formation, and allows the formation of homogenous collagen/THA composite hydrogels compatible with cell survival.


Assuntos
Ácido Hialurônico , Hidrogéis , Ácido Hialurônico/química , Ponto Isoelétrico , Hidrogéis/química , Cloreto de Sódio , Colágeno/química
9.
Sci Rep ; 13(1): 19862, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963965

RESUMO

Ferritin is a ubiquitous intracellular iron storage protein that plays a crucial role in iron homeostasis. Animal tissue ferritins consist of multiple isoforms (or isoferritins) with different proportions of H and L subunits that contribute to their structural and compositional heterogeneity, and thus physiological functions. Using size exclusion and anion exchange chromatography, capillary isoelectric focusing (cIEF), and SDS-capillary gel electrophoresis (SDS-CGE), we reveal for the first time a significant variation in ferritin subunit composition and isoelectric points, in both recombinant and native ferritins extracted from animal organs. Our results indicate that subunits composition is the main determinant of the mean pI of recombinant ferritin heteropolymers, and that ferritin microheterogeneity is a common property of both natural and recombinant proteins and appears to be an intrinsic feature of the cellular machinery during ferritin expression, regulation, post-translational modifications, and post-subunits assembly. The functional significance and physiological implications of ferritin heterogeneity in terms of iron metabolism, response to oxidative stress, tissue-specific functions, and pathological processes are discussed.


Assuntos
Ferritinas , Ferro , Animais , Ferritinas/metabolismo , Focalização Isoelétrica , Eletroforese em Gel de Poliacrilamida , Ferro/metabolismo , Ponto Isoelétrico
10.
Anal Chem ; 95(37): 13941-13948, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37653711

RESUMO

Isoelectric focusing (IEF) is a powerful tool for resolving complex protein samples, which generates IEF patterns consisting of multiplex analyte bands. However, the interpretation of IEF patterns requires the careful selection of isoelectric point (pI) markers for profiling the pH gradient and a trivial process of pI labeling, resulting in low IEF efficiency. Here, we for the first time proposed a marker-free IEF method for the efficient and accurate classification of IEF patterns by using a convolutional neural network (CNN) model. To verify our method, we identified 21 meat samples whose IEF patterns comprised different bands of meat hemoglobin, myoglobin, and their oxygen-binding variants but no pI marker. Thanks to the high throughput and short assay time of the microstrip IEF, we efficiently collected 1449 IEF patterns to construct the data set for model training. Despite the absence of pI markers, we experimentally introduced the severe pH gradient drift into 189 IEF patterns in the data set, thereby omitting the need for profiling the pH gradient. To enhance the model robustness, we further employed data augmentation during the model training to mimic pH gradient drift. With the advantages of simple preprocessing, a rapid inference of 50 ms, and a high accuracy of 97.1%, the CNN model outperformed the traditional algorithm for simultaneously identifying meat species and cuts of meat of 105 IEF patterns, suggesting its great potential of being combined with microstrip IEF for large-scale IEF analyses of complicated protein samples.


Assuntos
Aprendizado Profundo , Focalização Isoelétrica , Ponto Isoelétrico , Algoritmos , Carne
11.
Amino Acids ; 55(10): 1371-1379, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668712

RESUMO

Peptides are short linear molecules consisting of amino acids that play an essential role in most biological processes. They can treat diseases by working as a vaccine or antimicrobial agent and serves as a cancer molecule to deliver the drug to the target site for the treatment of cancer. They have the potential to solve the drawbacks of current medications and can be industrially produced in large quantities at low cost. However, poor chemical and physical stability, short circulating plasma half-life, and solubility are some issues that need solutions before they can be used as therapeutics. PepAnalyzer tool is a user-friendly tool that predicts 15 different properties such as binding potential, half-life, transmembrane patterns, test tube stability, charge, isoelectric point, molecular weights, and molar extinction coefficients only using the sequence. The tool is designed using BioPython utility and has even results with standard tools, such as Expasy, EBI, Genecorner, and Geneinfinity. The tool assists students, researchers, and the pharmaceutical sector. The PepAnalyzer tool's online platform is accessible at the link: http://www.iksmbrlabdu.in/peptool .


Assuntos
Anti-Infecciosos , Peptídeos , Humanos , Peptídeos/química , Aminoácidos/química , Anti-Infecciosos/química , Ponto Isoelétrico , Peso Molecular
12.
Biotechnol Prog ; 39(6): e3381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531360

RESUMO

Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt ). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.


Assuntos
Elastina , Ponto Isoelétrico , Elastina/química , Peptídeos/química , Proteínas Recombinantes de Fusão/genética
13.
Proc Natl Acad Sci U S A ; 120(33): e2305704120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549277

RESUMO

Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.


Assuntos
Hidrogéis , Seda , Animais , Coelhos , Seda/química , Hidrogéis/química , Ponto Isoelétrico , Materiais Biocompatíveis/química
14.
MAbs ; 15(1): 2232087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408314

RESUMO

Optimal pharmacokinetic (PK) properties of therapeutic monoclonal antibodies (mAbs) are essential to achieve the desired pharmacological benefits in patients. To accomplish this, we followed an approach comprising structure-based mAb charge engineering in conjunction with the use of relevant preclinical models to screen and select humanized candidates with PK suitable for clinical development. Murine mAb targeting TDP-43, ACI-5891, was humanized on a framework (VH1-3/VK2-30) selected based on the highest sequence homology. Since the initial humanized mAb (ACI-5891.1) presented a fast clearance in non-human primates (NHPs), reiteration of humanization on a less basic human framework (VH1-69-2/VK2-28) while retaining high sequence homology was performed. The resulting humanized variant, ACI-5891.9, presented a six-fold reduction in clearance in NHPs resulting in a significant increase in half-life. The observed reduced clearance of ACI-5891.9 was attributed not only to the overall reduction in isoelectric point (pI) by 2 units, but importantly to a more even surface potential. These data confirm the importance and contribution of surface charges to mAb disposition in vivo. Consistent low clearance of ACI-5891.9 in Tg32 mice, a human FcRn transgenic mouse model, further confirmed its utility for early assessment and prediction of human PK. These data demonstrate that mAb surface charge is an important parameter for consideration during the selection and screening of humanized candidates in addition to maintaining the other key physiochemical and target binding characteristics.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Camundongos , Humanos , Animais , Camundongos Transgênicos , Taxa de Depuração Metabólica , Ponto Isoelétrico , Antígenos de Histocompatibilidade Classe I
15.
J Chromatogr A ; 1705: 464137, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37356365

RESUMO

NANOBODYⓇ molecules are an innovative class of biotherapeutics based on heavy chain only VHH immunoglobulins. Much like canonical antibodies, they are prone to the formation of charge variants and other post-translational modifications, which can potentially impact their critical quality attributes. Therefore, establishing high-resolution product-specific methods, such as IEX chromatography, is essential for evaluating the purity of these molecules. However, due to the lower surface charge of NANOBODYⓇ molecules, their charge-based elution behavior can differ considerably from that of classical antibodies, resulting in a more extensive method development set-up for these smaller molecules. Using an initial pH screening gradient based on theoretical protein charge plots, we investigated the IEX retention behavior of eight NANOBODYⓇ molecules with a wide range of pI values (pI 5.0 to 10.0). Our findings reveal that the charge-based chromatographic behavior of NANOBODYⓇ molecules cannot be solely attributed to the isoelectric point (pI) of the protein. Rather, a molecule-specific charge threshold was identified as a critical parameter for NANOBODYⓇ molecule retention. Furthermore, the protein charge plot also showed that NANOBODYⓇ molecule elution can be characterized by a charge plateau where the net charge of the protein remains constant over a certain pH range (∼ pH 5.5 to pH 8.0), further challenging the paradigm that elution pH and pI are fixed values. The application of this theoretical approach using protein charge plots to define NANOBODYⓇ molecule charge threshold and charge plateau parameters, can reduce overall IEX method development turnaround time by at least 2-fold.


Assuntos
Anticorpos Monoclonais , Processamento de Proteína Pós-Traducional , Concentração de Íons de Hidrogênio , Anticorpos Monoclonais/química , Ponto Isoelétrico , Cromatografia por Troca Iônica/métodos
16.
J Colloid Interface Sci ; 650(Pt B): 2065-2074, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355354

RESUMO

In food manufacturing and particular biomedical products selected proteins are often required. Obtaining the desired proteins in a pure form from natural resources is therefore important, but often very challenging. Herein, we design a sequential coacervation process that allows to efficiently isolate and purify proteins with different isoelectric points (pIs) from a mixed solution, namely Bovine Serum Albumin (BSA, pI = 4.9) and Peroxidase from Horseradish (HRP, pI = 7.2). The key to separation is introducing a suitable polyelectrolyte that causes selective complex coacervation at appropriate pH and ionic strength. Specifically, polyethyleneimine (PEI), when added into the mixture at pH 6.0, produces a coacervation which exclusively contains BSA, leading to a supernatant solution containing 100 % HRP with a purity of 91 %. After separating the dilute and dense phases, BSA is recovered by adding poly(acrylic acid) (PAA) to the concentrated phase, which displaces BSA from the complex because it interacts more strongly with PEI. The supernatant phase after this step contains approximately 75 % of the initial amount of BSA with a purity of 99 %. Our results confirm that coacervation under well-defined conditions can be selective, enabling separation of proteins with adequate purity. Therefore, the established approach demonstrates a facile and sustainable strategy with potential for protein separation at industrial scale.


Assuntos
Polietilenoimina , Soroalbumina Bovina , Concentração de Íons de Hidrogênio , Soroalbumina Bovina/metabolismo , Polieletrólitos , Ponto Isoelétrico
17.
AAPS J ; 25(4): 53, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37225958

RESUMO

The prediction of bioavailability is one of the major barriers in the clinical translation of subcutaneously (SC) administered therapeutic monoclonal antibodies (mAbs) due to the lack of reliable in vitro and preclinical in vivo predictive models. Recently, multiple linear regression (MLR) models were developed to predict human SC bioavailability of mAbs using human linear clearance (CL) and isoelectric point (pI) of the whole antibody or Fv regions as independent variables. Unfortunately, these models cannot be applied to mAbs at the preclinical development stage because human CLs of these mAbs are unknown. In this study, we predicted human SC bioavailability of mAbs using preclinical data only by two approaches. In the first approach, allometric scaling was used to predict human linear CL from non-human primate (NHP) linear CL. The predicted human CL and the pI of the whole antibody or Fv regions were then incorporated into two previously published MLR models to predict the human bioavailability of 61 mAbs. In the second approach, two MLR models were developed using NHP linear CL and the pI of whole antibody or Fv regions of 41 mAbs in a training set. The two models were validated using an independent test dataset containing 20 mAbs. The four MLR models generated 77-85% of predictions within 0.8- to 1.2-fold deviations from observed human bioavailability. Overall, this study demonstrated that human SC bioavailability of mAbs at the preclinical stage could be predicted using NHP CL and pI of mAbs.


Assuntos
Anticorpos Monoclonais , Primatas , Animais , Humanos , Disponibilidade Biológica , Ponto Isoelétrico , Cinética
18.
J Pharm Sci ; 112(7): 1801-1810, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37037341

RESUMO

It has been nearly four decades since the first therapeutic monoclonal antibodies were approved and made available for widespread human use. Herein, US and EU approved antibody formulations are reviewed, and their nature and compositions are evaluated over time. From 1986 through Jan 2023, significant formulation trends have occurred and to represent this, 165 commercial antibody therapeutic formulations were binned into 5 different periods of time. Overall, we have observed the following: 1) The average formulation pH has decreased in recent years by over 0.5 units along with a decrease in variability that is largely driven by non-high concentration liquid in vial presentations for IV administration, 2) The use of certain excipients and buffers such as histidine, sucrose, metal chelators, arginine and methionine has become significantly more common, whereas formulations that contain phosphate, salt, no sugar or no surfactant have fallen out of favor, 3) Overall formulation space has increasingly become more homogenous and has converged in terms of formulation pH and excipient preferences regardless of formulation concentration, drug product presentation, and route of administration, 4) The average calculated isoelectric point (pI) has decreased 0.26 units, and 5) Overall, the average formulation pH and calculated pI for all commercial antibodies surveyed was 6.0 and 8.4, respectively. These trends and formulation convergence may be driven by multiple factors such as advancements in high-throughput computational and analytical technologies, the increased emphasis and understanding of certain developability attributes and formulation principles during lead selection and formulation development, and the adoption of low-risk development platform approaches.


Assuntos
Anticorpos Monoclonais , Arginina , Humanos , Anticorpos Monoclonais/química , Ponto Isoelétrico , Arginina/química , Excipientes/química , Sacarose/química
19.
Database (Oxford) ; 20232023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36929177

RESUMO

Proteins' molecular weight (MW) and isoelectric point (pI) are crucial for their subcellular localization and subsequent function. These are also useful in 2D gel electrophoresis, liquid chromatography-mass spectrometry and X-ray protein crystallography. Moreover, visualizations like a virtual 2D proteome map of pI vs. MW are worthwhile to discuss the proteome diversity among different species. Although the genome sequence data of the fungi kingdom improved enormously, the proteomic details have been poorly elaborated. Therefore, we have calculated the MW and pI of the fungi proteins and reported them in, FungiProteomeDB, an online database (DB) https://vision4research.com/fungidb/. We analyzed the proteome of 685 fungal species that contain 7 127 141 protein sequences. The DB provides an easy-to-use and efficient interface for various search options, summary statistics and virtual 2D proteome map visualizations. The MW and pI of a protein can be obtained by searching the name of a protein, a keyword or a list of accession numbers. It also allows querying protein sequences. The DB will be helpful in hypothesis formulation and in various biotechnological applications. Database URL https://vision4research.com/fungidb/.


Assuntos
Proteoma , Proteômica , Ponto Isoelétrico , Proteoma/genética , Proteoma/química , Proteômica/métodos , Peso Molecular , Eletroforese em Gel Bidimensional/métodos
20.
Food Res Int ; 166: 112600, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914325

RESUMO

In this work, by combining the microcolumn isoelectric focusing (mIEF) and similarity analysis with the earth mover's distance (EMD) metric, we proposed the concept of isoelectric point (pI) barcode for the identification of species origin of raw meat. At first, we used the mIEF to analyze 14 meat species, including 8 species of livestock and 6 species of poultry, to generate 140 electropherograms of myoglobin/hemoglobin (Mb/Hb) markers. Secondly, we binarized the electropherograms and converted them into the pI barcodes that only showed the major Mb/Hb bands for the EMD analysis. Thirdly, we efficiently developed the barcode database of 14 meat species and successfully used the EMD method to identify 9 meat products thanks to the high throughput of mIEF and the simplified format of the barcode for similarity analysis. The developed method had the merits of facility, rapidity and low cost. The developed concept and method had evident potential to the facile identification of meat species.


Assuntos
Algoritmos , Hemoglobinas , Ponto Isoelétrico , Carne/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...